Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a* }}$ Sema

 Öztürk, ${ }^{\text {a }}$ Hasan Küçükbay, ${ }^{\text {b }}$ Ersin Orhan ${ }^{\mathrm{c}}$ and Orhan Büyükgüngör ${ }^{\text {d }}$${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Inönü University, 44069 Malatya, Turkey, ' Department of Chemistry, Faculty of Arts and Sciences, Karaelmas University, 67100 Zonguldak, Turkey, and
d Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.089$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Ethyl-4-phenylethyl-1,4-dihydroquinoxaline-2,3-dione

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, was synthesized by heating 2,4-dioxo-1,3-diphenyl-7,8-benzo-6-ethyl-9-(2-phenylethyl)-1,3,6,9-tetrazaspiro[4.4]nonane in toluene. The quinoxaline ring system is planar and the dihedral angle between the phenyl and piperazine rings is $28.6(1)^{\circ}$. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Electron-rich olefins are very reactive compounds and they easily react with many organic reagents. The reaction of electron-rich olefins with phenyl isocyanate gives parabanic acid derivatives (Hocker \& Merten, 1971). 1,4-Diphenyl-quionoxaline-2,3-dione was first synthesized from N, N^{\prime}-di-phenyl-o-phenylenediamine and oxalyl chloride (Bourson, 1971). We have also synthesized and reported some parabanic acid derivatives of bis(1,3-dimethylbenzimidazol-2-ylidene) (Küçükbay et al., 1995, 2003; Küçükbay \& Durmaz, 1997). According to the literature, the title compound, (I), was was first synthesized from an electron-rich olefin via a parabanic acid derivative. The aim of this study was to explain the rearrangement of the parabanic acid derivative to the quionoxaline compound and elucidate the crystal structure of the title compound.

(I)

The bond lengths and angles observed in (I) show normal values (Allen et al., 1987). The quinoxaline ring system is planar within 0.057 (2) A, with a dihedral angle of $3.0(1)^{\circ}$ between the piperazine ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 3-\mathrm{C} 8$) and benzene ($\mathrm{C} 13-$ C 18) rings; the dihedral angle between the piperazine and phenyl rings is $28.6(1)^{\circ}$.

The piperazine ring and the phenyl ring of the symmetryrelated molecule at $\left(\frac{1}{2}-x, y-\frac{1}{2}, z\right)$ are stacked, with a centroid-centroid distance of 3.467 (2) \AA. In the crystal structure, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form a network structure (Table 2 and Fig. 2).

Experimental

2,4-Dioxy-1,3-diphenyl-7,8-benzo-6-ethyl-9-(2-phenylethyl)-1,3,6,9tetrazaspiro[4.4]nonane (Küçükbay et al., 2003) ($0.67 \mathrm{~g}, 1.37 \mathrm{mmol}$) was refluxed in non-dried toluene (5 ml) for half an hour. The

Received 11 June 2004 Accepted 21 June 2004 Online 26 June 2004

Figure 1
An ORTEP-3 (Farrugia, 1997) view of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids.

A view of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) in the title compound.
solution was then concentrated to half of the original volume. Upon cooling the solution to 253 K , crystals of the title compound were obtained (yield: $0.36 \mathrm{~g}, 89 \%$; m.p. $459-460 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $1.2\left(t, \mathrm{CH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.8\left(t, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, 2 \mathrm{H}\right), 3.5\left(t, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, 2 \mathrm{H}\right)$, $3.3\left(q, \mathrm{CH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right), 6.2-7.6(m, \mathrm{Ar}-\mathrm{H}, 19 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 15.44, 36.66, 42.59, 48.69, 100.78, 105.08, 119.82, 120.06, 130.13, 132.36, 153.35, 154.45. $v_{(\mathrm{C}=\mathrm{O})}: 1725 \mathrm{~cm}^{-1}$. Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 73.47, H 6.12, N 9.52\%; found: C 74.17, H 6.48, N 11.25%.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=294.34$
Orthorhombic, Pbca
$a=13.369(5) \AA$
$b=15.310(5) \AA$
$c=14.690(5) \AA$
$V=3006.7(18) \AA^{3}$
$Z=8$
$D_{x}=1.301 \mathrm{Mg} \mathrm{m}^{-3}$

Mo K α radiation
Cell parameters from 6175
reflections
$\theta=2.5-25.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, yellow
$0.42 \times 0.33 \times 0.24 \mathrm{~mm}$
$D_{x}=1.301 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: none
18583 measured reflections
3351 independent reflections
1328 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.115 \\
& \theta_{\max }=27.3^{\circ} \\
& h=-14 \rightarrow 17 \\
& k=-19 \rightarrow 19 \\
& l=-18 \rightarrow 18
\end{aligned}
$$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0269 P)^{2}\right]$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$w R\left(F^{2}\right)=0.089$	$(\Delta / \sigma)_{\max }<0.001$
$S=0.86$	$\Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3}$
3351 reflections	$\Delta \rho_{\min }=-0.13$ e \AA^{-3}
200 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: $0.0021(3)$

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0269 P)^{2}\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.12 \mathrm{e}^{\circ} \AA^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0021 (3)

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.222(3)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.476(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.230(3)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.363(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.356(3)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.401(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.404(3)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.473(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$122.7(2)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 2$	$123.2(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$115.5(2)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$119.0(2)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$121.67(19)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$117.9(2)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$122.4(2)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.5(2)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 11$	$116.04(19)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 8$	$119.6(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 11$	$121.5(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 3$	$119.2(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$122.7(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$121.5(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$119.5(2)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$111.5(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.8(2)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$112.50(19)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$175.0(2)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$-0.4(4)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$-89.2(3)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$164.0(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$86.7(3)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-107.7(3)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{O} 2$	$-175.4(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18$	$70.5(3)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$-90.4(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.97	2.47	$3.336(3)$	149
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.54	$3.453(3)$	167

Symmetry code: (i) $\frac{1}{2}+x, y, \frac{3}{2}-z$.
The crystals of the title compound diffracted very poorly, displaying broad weak reflections. Therefore, the measured intensities have a high standard uncertainity and, as a consequence, the $R_{\text {int }}$ value is also relatively high. H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and allowed to ride on their parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the other H atoms.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund). The authors HK and EO also thank İnönü University (grant No. 2000/05) for financial support for this study.

organic papers

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bourson, J. (1971). Bull. Soc. Chim. Fr. pp. 3541-3547.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hocker, J. \& Merten, R. (1971). Liebigs Ann. Chem. 751, 145-154.
Küçükbay, H., Çetinkaya, E. \& Durmaz, R. (1995). Arzneim Forsch. Drug Res. 45, 1331-1334.
Küçükbay, H. \& Durmaz, B. (1997). Arzneim Forsch. Drug Res. 47, 667-670.
Küçükbay, H., Durmaz, R., Orhan, E. \& Günal, S. (2003). Farmaco, 58, 431437.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

